欧美a级做爰片,欧美18videos极品,麻花豆mv国产剧,免费a级毛片在线播放不收费,两个人视频www

全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數(shù)學(xué)課件 > 人教版九年級數(shù)學(xué)上冊 > 《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時)

《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時)

《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時) 詳細介紹:

《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時)《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時)

人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時),共29頁。

素養(yǎng)目標(biāo)

1. 能應(yīng)用二次函數(shù)的性質(zhì)解決商品銷售過程中的最大利潤問題.

2. 弄清商品銷售問題中的數(shù)量關(guān)系及確定自變量的取值范圍. 

探究新知

利潤問題中的數(shù)量關(guān)系

某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,已知商品的進價為每件40元,則每星期銷售額是18000元,銷售利潤6000元.

(1)銷售額= 售價×銷售量;

(2)利潤= 銷售額-總成本=單件利潤×銷售量;

(3)單件利潤=售價-進價.

如何定價利潤最大

例1  某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調(diào)查反映:每漲價1元,每星期少賣出10件;每降價1元,每星期可多賣出18件,已知商品的進價為每件40元,如何定價才能使利潤最大?

漲價銷售

①每件漲價x元,則每星期售出商品的利潤y元,填空:

建立函數(shù)關(guān)系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.

②自變量x的取值范圍如何確定?

營銷規(guī)律是價格上漲,銷量下降,因此只要考慮銷售量就可以,故300-10x ≥0,且x ≥0,因此自變量的取值范圍是0 ≤x ≤30.

③漲價多少元時,利潤最大,最大利潤是多少?

y=-10x2+100x+6000,

即定價65元時,最大利潤是6250元.

求解最大利潤問題的一般步驟

(1)建立利潤與價格之間的函數(shù)關(guān)系式:運用“總利潤=總售價-總成本”或“總利潤=單件利潤×銷售量”

(2)結(jié)合實際意義,確定自變量的取值范圍;

(3)在自變量的取值范圍內(nèi)確定最大利潤:

可以利用配方法或公式法求出最大利潤;也可以畫出函數(shù)的簡圖,利用簡圖和性質(zhì)求出.

限定取值范圍中如何確定最大利潤

例3  某商店試銷一種新商品,新商品的進價為30元/件,經(jīng)過一段時間的試銷發(fā)現(xiàn),每月的銷售量會因售價的調(diào)整而不同.令每月銷售量為y件,售價為x元/件,每月的總利潤為Q元. 

(1)當(dāng)售價在40~50元時,每月銷售量都為60件,則此時每月的總利潤最多是多少元? 

解:由題意得:當(dāng)40≤x≤50時,

Q = 60(x-30)= 60x-1800.

∵ y = 60 > 0,Q隨x的增大而增大,

∴當(dāng)x最大= 50時,Q最大= 1200.

答:此時每月的總利潤最多是1200元. 

(2)當(dāng)售價在50~70元時,每月銷售量與售價的關(guān)系如圖所示,則此時當(dāng)該商品售價x是多少元時,該商店每月獲利最大,最大利潤是多少元? 

解:當(dāng)50≤x≤70時,

設(shè)y與x函數(shù)關(guān)系式為y=kx+b,

∵線段過(50,60)和(70,20).

50k+b=60,

70k+b=20,

k =-2,

b = 160.

∴ y =-2x +160(50≤x≤70). 

課堂小結(jié)

建立函數(shù)關(guān)系式

總利潤=單件利潤×銷售量或總利潤=總售價-總成本

確定自變量取值范圍

漲價:要保證銷售量≥0;

降件:要保證單件利潤≥0

確定最大利潤

利用配方法或公式求最大值或利用函數(shù)簡圖和性質(zhì)求出

... ... ...

關(guān)鍵詞:實際問題與二次函數(shù)PPT課件免費下載,二次函數(shù)PPT下載,.PPTX格式;‍

《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第2課時) 下載地址:

本站素材僅供學(xué)習(xí)研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉(zhuǎn)載。

與本課相關(guān)的PPT課件:

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第3課時)

    《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第3課時)

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第3課時),共32頁。 素養(yǎng)目標(biāo) 1.掌握二次函數(shù)模型的建立,會把實際問題轉(zhuǎn)化為二次函數(shù)問題. 2.利用二次函數(shù)解決拱橋及運動中的有關(guān)問題. 3.能運用二次函數(shù)的圖象與性質(zhì)進行決策. 探究新知..

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第1課時)

    《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第1課時)

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件(第1課時),共26頁。 素養(yǎng)目標(biāo) 1.掌握幾何問題中的相等關(guān)系的尋找方法,并會應(yīng)用函數(shù)關(guān)系式求圖形面積的最值. 2.會應(yīng)用二次函數(shù)的性質(zhì)解決實際問題. 探究新知 二次函數(shù)與幾何圖形面積的最值..

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件

    《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT免費課件,共16頁。 1. 如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中ADMN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄. (1)若a=60,求矩形..

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第2課時)

    《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第2課時)

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第2課時),共11頁。 教學(xué)新知 圖示是拋物線形拱橋,當(dāng)拱橋頂離水面2m,水面寬4m。若水面下降1m,水面寬度增加多少? 解:以拋物線的頂點為原點,以拋物線的對稱軸為y軸,建立直角坐標(biāo)系。設(shè)..

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第1課時)

    《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第1課時)

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT課件下載(第1課時),共15頁。 情境引入 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標(biāo)。 (1)y=6x2+12x 解:(1)y=6(x+1)2-6,拋物線的開口向上,對稱軸為x=-1,頂點坐標(biāo)是(-1,-6)。..

  • 《實際問題與二次函數(shù)》二次函數(shù)PPT教學(xué)課件(第3課時)

    《實際問題與二次函數(shù)》二次函數(shù)PPT教學(xué)課件(第3課時)

    人教版九年級數(shù)學(xué)上冊《實際問題與二次函數(shù)》二次函數(shù)PPT教學(xué)課件(第3課時),共13頁。 情景導(dǎo)入 探究 圖中是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2m,水面寬4m,水面下降1m時,水面寬度增加了多少? 新知探究 以拋物線的頂點為原點,以拋物線的對稱軸為y軸..

熱門PPT課件
最新PPT課件
相關(guān)PPT標(biāo)簽